In the optimization group we are interested in developing advanced theories and algorithms to analyze and solve optimization problems derived from applications.

Our research covers a wide range of topics, such as convex and variational analysis, convex and nonconvex programming, complementarity problems and variational inequalities, integer programming, optimal control and calculus of variation.


  • Oré-Albornoz, E., Mahey, P., & Ocaña, E. (2020). A unified splitting algorithm for composite monotone inclusions. J. Convex Anal., 27(3), 893–922.
  • Ocaña, E., & Flores-Luyo, L. (2020). The relationship of inertias between two representations of linear subspaces. Optimization, 69(11), 2421–2430. doi:10.1080/02331934.2019.1598405
  • Flores-Luyo, L., Agra, A., Figueiredo, R., & Ocaña, E. (2020). Mixed integer formulations for a routing problem with information collection in wireless networks. Eur. J. Oper. Res., 280(2), 621–638. doi:10.1016/j.ejor.2019.06.054
  • Flores-Bazán, F., Echegaray, W., Flores-Bazán, F., & Ocaña, E. (2017). Primal or dual strong-duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap. J. Glob. Optim., 69(4), 823–845. doi:10.1007/s10898-017-0542-9
  • Ocaña, E., Cotrina, J., & Bueno, O. (2015). Equivalence between \(p\)-cyclic quasimonotonicity and \(p\)-cyclic monotonicity of affine maps. Optimization, 64(7), 1487–1497. doi:10.1080/02331934.2014.891031
  • Ocaña, E., & Cartigny, P. (2012). Explicit solutions for singular infinite horizon calculus of variations. SIAM J. Control Optim., 50(5), 2573–2587. doi:10.1137/110856496
  • Ocaña Anaya, E., & Cartigny, P. (2011). Transversality condition for singular infinite horizon calculus of variations. J. Glob. Optim., 50(1), 169–178. doi:10.1007/s10898-011-9701-6
  • Crouzeix, J.-P., & Ocaña Anaya, E. (2011). Métodos algorítmicos haces–proximal–lagrangiano aumentado para problemas de optimización matemática. Vol. 55. Lima: Instituto de Matemática y Ciencias Afines, IMCA.
  • Crouzeix, J.-P., & Anaya, E. O. (2010). Monotone and maximal monotone affine subspaces. Oper. Res. Lett., 38(2), 139–142. doi:10.1016/j.orl.2009.10.015
  • Crouzeix, J.-P., & Ocaña Anaya, E. (2010). Maximality is nothing but continuity. J. Convex Anal., 17(2), 521–534.
  • Anaya, E. O., Cartigny, P., & Loisel, P. (2009). Singular infinite horizon calculus of variations. Applications to fisheries management. J. Nonlinear Convex Anal., 10(2), 157–176.
  • Crouzeix, J.-P., Anaya, E. O., & Sosa, W. (2007). A construction of a maximal monotone extension of a monotone map. ESAIM, Proc., 20, 93–104. doi:10.1051/proc:072009